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Abstract: I examine the complex system durability control method with the usage of the modelled
change of the failure probability, with the passing of time and the degrading of the system. I
propose an approach to the problem of the accounting of the relations between the complex
system blocks. I describe a modelling algorithm that combines the logical linguistic and logical
probabilistic prognosis of the processes of the parameter values’ change with the passing of time.
The modelling allows getting a time reserve to run the needed maintenance operations,
increasing the reliability of the system.
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I. INTRODUCTION

The main principles that I use for the complex systems durability control are adaptation, dynamic
natural selection (or hot reservation), stress, compensation and borrowing, stupor or enabling of the
emergency mode [4]. For the inner system state deviations due to various failures, to achieve the needed
durability I traditionally use the hot reservation principle, which is similar to the natural dynamic
selection in the living organisms. A signal to enable the mechanism of the dynamic natural selection,
that is the switching the channels and the blocks to the spare ones, is the observed overlaps of the
blocks’ inner state, that can be measured by its expected value of the block’s parameters, or by its
failure probability [3].
The problem of the system’s durability or its reliable functioning provisioning, when the system’s inner
state deviation exceeds its allowed thresholds, is stated quite a long time ago and is mostly examined
[6]. However, while estimating the change with the passing of time of a complex logical function,
which describes the system’s failure probability with the accounting of the relations between the blocks
(excluding only the simplest schemes), there appear certain complexities and ambiguities [2]. The
problem of the accounting of the parameters of the system’s blocks’ influence on the parameters of the
blocks they are related to, while calculating the failure probability with the passing of time of the
complex system still doesn’t have a practically acceptable solution [5], since the analytical account of
that issue in a complex system invariably leads to very complex computations. Let us examine one of
the possible approaches to the problem of the relations’ accounting between the blocks of a complex
system.

II. A SIMPLIFIED ACCOUNTING OF THE RELATIONS BETWEEN THE BLOCKS OF A COMPLEX SYSTEM

It is clear that with the passing of usage time T of a complex system the probabilities of correct
functioning of its blocks Pic(T) are decreasing by an exponential law [1]:

0 0( ) exp( )ic i i iP t t  (1)
Where ti is the usage time of the ith block of the system, ai0 is the decrease coefficient, which I find out
of the equation (1), since the mean time between failures ti0 and the initial correct functioning
probability Pic(T) are usually given for the system blocks.
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That decrease of the probabilities may be described by the following change of their parameter values’
expected values [1]:
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Where: bi is the maximum allowed value of the ith parameter.
mi is the expected value of the ith parameter.
ϭi is the root mean square of the ith parameter.
Ф(х) is the probability integral that cannot be expressed through elementary functions, but there are
tables of its calculated values [1], or its approximate value can be found as a sum of a decreasing row.
Since the initial values for Piбо, bi and mi0 are usually known for each block, the root mean square value
ϭi for each block may be found from the following equations:
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( ) 0   (4),
It is also clear that the approaching of the expected values of the ith block’s parameters to the dangerous
(critical) threshold ci and, furthermore, to the maximal allowed threshold bi also affect the parameters of
the related blocks. For instance, the change in the power supply block’s output voltage also affects the
amplification coefficient of the related amplification block. However, the problem of the estimation of
the change with the passing of time of a complex logical function, which describes the system’s failure
probability with the accounting of the relations between the blocks still doesn’t have a practically
acceptable solution [6], since the analytical accounting of that fact in a complex system leads to very
complex computations. Thus, I propose the following simplified approach to that problem:
When the expected value mi(ti) of the block’s parameters in some time moment tik fall into a dangerous
zone i i ic m b  , I set the coefficients ( ) 2w i  , ( ) 3u i  for this block. Here,

w(i) is a state characteristic of the ith block (w(i) = 3 is broken, w(i) = 2 is dangerous, w(i) = 1 is
normal).
u(i) is the characteristic of the ith block proximity to the nearest broken or dangerous block (u(i) = 0 is
far, u(i) = 1 is connected via a single block, u(i) = 2 is directly connected, u(i) = 3 is self).
After, I perform an expected value shift:

* ( ) ( ) ( )i i i i im m w i u i m m   (5)
Where μ(mi) is the current expected value membership function of a certain interval, which I calculate
as following (Fig. 1):
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Figure 1. Fuzzification

Then I set the block numbers j of the blocks that are directly related to the “dangerous” block. For them,
I set the values of the relation coefficients 1)( ju , 2)( ju and perform the expected value shift:

* ( ) ( ) ( )j j j j jm m w j u j m m   (6)

Where I calculate μ(mj) by the same rules 1) – 6).
After, I define the block numbers q, that are connected to the block i via a single block. For them, I set

( ) 1w q  , ( ) 1u q  and perform the expected value shift:
* ( ) ( ) ( )q q q q qm m w q u q m m   (7)

If now, after recounting of the expected values, I find that some block has its absolute value over the
allowed threshold (|mi| > bi), such block is accounted to be broken, its failure probability is set to one
( 1)fiP  , and the whole system’s failure probability is set to one 1fP  . Otherwise, I need to calculate the

new values of failure probability of all blocks from the new expected values, according to the formula
(2), and then to calculate the failure probability of the whole system, by using, for instance, a
polynomial formula [6]:
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Thus in the proposed solution to the relations’ accounting problem, when a dangerous situation arouses,
I instantly change the expected parameter values of the given block and its related blocks, which allows
in a first approximation to account the mutual impacts of the blocks’ parameters to the change of the
failure probabilities with the passing of time.

III. THE MODELLING OF CHANGES WITH THE PASSING OF TIME OF THE COMPLEX SYSTEM FAILURE

PROBABILITY WITH THE RESERVATION OF THE BLOCKS

While modelling the change with the passing of time of the complex system failure probability with the
reservation of the blocks I assume that the system contains Nb basic and Nr reserve blocks. I must
determine the change with the passing of time t of the failure probability Ps{y = 1} of the system, if I
know:
The structure of the system, by which I can draw the block relations table.
The mean time between failures for each ith block of the system ti0.
The initial probability of the correct functioning of each ith block of the system Pi(ti0).
The maximal (critical) deviation threshold of the ith block parameters bi. When this threshold is
surpassed, I assume that the block is broken (zi = 1 – ith block failure).
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The dangerous deviation of the parameters of the ith block ci. When surpassed, this leads to the increase
of the parameters’ deviation of related blocks.
The deviation threshold di, surpassing of which leads to the substitution of the block with the reserve
one.
In a system with reservation the system failure means that:

1 1 2 2 3 3( ) ( ) ( ) ... ( )b r b r b r Nb Nry z z z z z z z z         (9)
Where zib is the failure of ith basic block and zir is the failure of the ith reserve block of the system.
Thus to compute the system’s failure probability that characterizes its reliability, in a time moment T I
must first compute the probabilities of the conjunctive elements in the equation (9):
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Where Tib, Tir are the corresponding working time of the ith basic and reserve blocks.
Furthermore:
Since I are interested in the situations when the blocks’ parameters are nearing the dangerous values,
when ci < |mi| < bi, where ci is the dangerous parameter threshold and bi is the critical threshold of the
parameter, or the critical values, when |mi| ≥ bi, I may ignore the value (( ) / )i i ib m    in the equation
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block is not connected, Тir = 0 and Pir(Тir) = 0.
If I don’t have the ith reserve block, then Pir(Тir) = 1
If some ith basic block doesn’t have a reserve one and for that block Pi0(Тib) = 1 block failure, then Pc{y
= 1} = 1
If I don’t have any ith block, for which Pib(Тi0) = 1 and Pir(Тir) = 1
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If for some ith block in some ijth moment of time Tij the parameter deviations exceed the threshold di,
then, providing that I have a reserve block, I change it by that block, for him I set the value Pi0(Тib) = 1
and for the reserve block I set Tir = T – Tij. Then, Pi(Т) = Pir(Тir), и Pс{y = 1} I also compute by the
formula (11).
If after replacing the basic block to the reserve one I have Pir(Тir) = 1, then Pc{y = 1} = 1.
The correct functioning probability of each ith block decreases with the passing of its working time ti

according to the exponential law Pib(Тib) = exp(–ai0 Тib), (10), and the probability or correct work of
each ith reserve block Pir(Тir) remain constant until the time moment of their enabling Tij, and then
decrease with the time passing Tir = T – Tij also by the exponential law of the type (1).

IV. THE ALGORITHM OF THE MODELLING OF THE FAILURE PROBABILITY WITH THE PASSING OF

TIME OF THE COMPLEX SYSTEM WITH THE RESERVATION OF THE BLOCKS

Taking into account the facts described above, I compose the following algorithm:
1) Initializing

N – the quantity of blocks of the system
Ф(х) – the normal distribution function, given as a linearly interpolated table values [1]
V – system time; V := 0
T – final modelling time
∆ – modelling time step
C – square binary matrix of rank N, which describes the pointed graph of the system’s blocks relations.
mi(V) – expected value of the ith block condition before accounting the relations in a time moment V
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Mi(V) – addition to the expected value of the ith block condition after accounting the relations in the
time moment V
Ϭi – root mean square of the ith block condition
Pi(V) – ith block failure probability in a time moment V, Pi(V) = Pi(0) = 0.004 (according to standards,
or the block’s documentation)
ti – mean time between failures of the ith block (according to standards or the block’s documentation)
Vi – a time moment of the ith block’s replacing with a spare one (0 if the change didn’t occur), Vi := 0
ai – an exponential coefficient of the ith block failure probability
b – the critical threshold for a block’s parameter values, b := 0.15
ci – the dangerous threshold for the ith block’s parameter values
di – the threshold for the ith block’s parameter values when the block is replaced by a spare one
µ i(V) – the membership function of the ith block in the time moment V
wi(V) – the block condition coefficient in the time moment V
ui(V) – the coefficient of dangerous/critical blocks proximity to the ith block in the time moment V
ki – reserving coefficient of the ith block (ki = 0 for no reserve block, ki = 1 for 1 reserve block, ki = 2 for
2 reserve blocks etc.)
P(V) – system failure probability in the time moment V

2) Computing the root mean square value Ϭi for each ith block
I calculate xi = Pi(0) / 2
I calculate the function’s Ф(xi) value from the table [1].
I calculate Ϭi = –b / Ф(xi)

3) Computing the exponential coefficient ai for each ith block
ai = –1 / ti * ln(Pi(0))

4) Computing the failure probability and the excepted value mi(V) for each ith block in the time
moment V

I calculate Pi(V) = exp(–ai * (V – Vi))
I calculate the value of the function Ф(Pi(V)) from the table [1].
I calculate mi(V) = b – Ф(Pi(V)) * Ϭi

5) Computing the membership function for each ith block
If mi(V)  –3 * Ϭi, then µ i(V) = 1
If mi(V) > –3 * Ϭi and mi(V)  –Ϭi, then µ i(V) = max(µ i([–3 * Ϭi, –Ϭi]), µ i([–2 * Ϭi, –Ϭi]))
If mi(V) > –Ϭi and mi(V)  0, then µ i(V) = max(µ i([–Ϭi, 0]), µ i([–Ϭi, 0]))
If mi(V) > 0 and mi(V)  Ϭi, then µ i(V) = max(µ i([0, Ϭi]), µ i([0, Ϭi]))
If mi(V) > Ϭi and mi(V)  –3 * Ϭi, then µ i(V) = max(µ i([Ϭi, 3 * Ϭi]), µ i([Ϭi, 2 * Ϭi]))
If mi(V) ≥ 3 * Ϭi, then µ i(V) = 1
If mi(V) < –b or mi(V) > b, then wi(V) = 0 and Pi(V) = 1 (ith block is critical)
If (mi(V) > –b and mi(V) < –ci) or (mi(V) > ci and mi(V) < b), then wi(V) = 2 (ith block is dangerous)
If mi(V) ≥ –ci or mi(V) ≤ ci then wi(V) = 1 (the block is functional)

6) Computing the proximity coefficient ui(V) for each dangerous/critical ith block in the time
moment V

If wi(V) = 0 (ith block is critical), then ui(V) = 0
Furthermore:
If a dangerous and/or critical block is related to the ith, then ui(V) = 3
If a dangerous and/or critical block is related to the ith through a single block, then ui(V) = 2
In all other cases ui(V) = 0
If wi(V) = 2 (ith block is dangerous), then ui(V) = 3
Furthermore:
If a dangerous and/or critical block is related to the ith, then ui(V) = 2
If a dangerous and/or critical block is related to the ith through a single block, then ui(V) = 1
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In all other cases ui(V) = 0
I define the related blocks from the matrix C.

7) Computing the addition to the expected value
Mi(V) = Ϭi * wi(V) * ui(V) * mi(V) * µ i(V)

8) Computing the expected value mi(V) after accounting the relations in the time moment V
If mi(V) < –di or mi(V) > di, then mi(V) = mi(0), else mi(V) = mi(V) + Mi(V)

9) Computing the failure probability Pi(V) for each ith block
If wi(V) = 0 and ki = 0, then Pi(V) = 1
If wi(V) = 0 and ki = 1, then Pi(V) = pi(V) := 0.004 and Vi = V
If wi(V) ≠ 0 and ki = 1 and mi(V) < –di or mi(V) > di, then
Vi = V, Pi(V) = pi(V) := 0.004, else:
Pi(V) = Ф((–b – mi(V)) / Ϭi) – Ф((b – mi(V)) / Ϭi)
I calculate the value of the function Ф according to the table [1].

10) Computing the system’s failure probability
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From these values, I draw the graph P(V)
11) If P(V) = 1, stop, else:
12) If V ≥ T, stop, else V = V + Δ and go to step 4

V. EXAMPLE

Let us examine a following example system, displayed in the Fig. 2. That is a schematic representation
of a universal module for a smart electromechanical system (UN SEMS).
For it, let us assume that, Pc0 = 0.996, mi0 = 0, bi = 0.15, t0i = 27000 hours, ci = Ϭi, ∆ = 10000 hours.

Figure 2. UN SEMS

When displayed as a directed graph on a scheme, the system looks as shown in the Fig. 3.
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Figure 3. UN SEMS scheme

Here:
MC is Main Controller
LP is Lower Platform
UP is Upper Platform
C1 to C6 are Controllers
E1 to E6 are Engines
R1 to R6 are Reducers
LJ1 to LJ6 are Lower Joints
UJ1 to UJ6 are Upper Joints
In the first example case, let us assume that I don’t have spare blocks for any of the system’s blocks.
Then, after running series of test simulations, I gain the following system probability from step #
dependency, which is shown in Fig. 4.

Figure 4. System failure probability graph, without spare blocks

When running series of test simulations assuming that I do have a single spare block for each of the
system’s blocks, I gain the following dependency, shown in Fig. 5.
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Figure 5. System failure probability graph, with spare blocks

VI. DECISION MAKING METHODS FOR DURABILITY CONTROL

Let us examine the pros and cons of the possible decision making methods while controlling the
durability of a system with hot reserving.
Let us control the block parameters xi and switch to a reserve block when xi ≥ bi

Pros: simplicity.
Cons: system hiatus while switching the block and the high probability of false alerts on random
short-timed parameter value peaks.
Let us control the block parameters xi while computing the expected values mi, and switch to a reserve
block when mi ≥ bi

Pros: lower false alert probability.
Cons: system hiatus while switching the block, and the system complexity is higher.
Let us control the block parameters xi while computing the current expected value mi, modelling the
expected value mi(t) with the passing of time t with or without accounting the relations between the
system’s blocks, defining by the modelling results the probable time moment Ta of a situation when mi

≥ bi, and in a time moment Tp = kpTa (kp < 1) I switch the block to a reserve one and perform the fixing
of partial failures.
Pros: low probability of false alerts, low probability of system hiatus while switching the block.
Cons: low prognosis precision of the time moment Tp, high system complexity.

VII. SUMMARY

The proposed modelling method allows to increase the probability of the prognosis of the critical
situation occurring time for each block of the system, thus increasing the system durability via timely
activation of reserving mechanism. By doing so, I may receive a time reserve to perform the needed
technical measures for reserve block switching and for the partial failures fixing.
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